MulaiMulai sekarang secara gratis

Decision variables of case study

Continue the case study of the Capacitated Plant Location model of a car manufacture. You are given four Pandas data frames demand, var_cost, fix_cost, and cap containing the regional demand (thous. of cars), variable production costs (thous. $US), fixed production costs (thous. $US), and production capacity (thous. of cars). All these variables have been printed to the console for your viewing.

Latihan ini adalah bagian dari kursus

Supply Chain Analytics in Python

Lihat Kursus

Petunjuk latihan

  • Initialize the class.
  • Define the decision variables using LpVariable.dicts and python's list comprehension.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Initialize Class
model = LpProblem("Capacitated Plant Location Model", ____)

# Define Decision Variables
loc = ['USA', 'Germany', 'Japan', 'Brazil', 'India']
size = ['Low_Cap','High_Cap']
x = LpVariable.dicts("production_",
                     [(i,j) for ____ in ____ for ____ in ____],
                     lowBound=____, upBound=____, cat=_____)
y = LpVariable.dicts("plant_", 
                     [____ for ____ in ____ for ____ in ____], cat=____)
Edit dan Jalankan Kode