MulaiMulai sekarang secara gratis

Store Pipeline

You'll now create the Pipeline again, but directly, skipping the step of initializing the StandardScaler and LogisticRegression as a variable. Instead, you will do the initialization as part of the Pipeline creation.

You'll then store the model for further use.

The data is available as X_train, with the labels as y_train.

StandardScaler, LogisticRegression and Pipeline have been imported for you.

Latihan ini adalah bagian dari kursus

Analyzing IoT Data in Python

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Create Pipeline
pl = Pipeline([
        ("scale", ____),
        ("logreg", ____)
    ])

# Fit the pipeline
____.____(____, ____)
Edit dan Jalankan Kode