In-sample and out-of-sample performance
Does a more sophisticated model always perform better? As we discussed in the video, that's only half the truth.
Overfitted models understand the structure of their training set perfectly but cannot generalize to new data. That's a bummer! At the end of the day, the main purpose of a predictive model is to perform well on new data, right? Go investigate!
Pre-loaded is the last model of the previous exercise, complex_model, and your training and test data (chocolate_train and chocolate_test).
Cet exercice fait partie du cours
Machine Learning with Tree-Based Models in R
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Predict on and combine with training data and calculate the error
predict(___, new_data = ___) %>%
___ %>%
mae(___,
___)