Tableau adapté au web
Améliorons maintenant le tableau de l’exemple précédent pour qu’il soit plus adapté au web.
Cet exercice fait partie du cours
Créer des tableaux de bord avec flexdashboard
Instructions
- Ajoutez un tableau dans le graphique Station Usage qui contient les données de
station_trips_df, en utilisant la fonctiondatatable(). - Tricotez et agrandissez l’affichage HTML pour explorer le tableau obtenu. Essayez de trier la colonne Gap, de rechercher toutes les stations Caltrain et de passer d’une page à l’autre.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
{"my_document.Rmd":"---\ntitle: \"Bike Shares Daily\"\noutput: \n flexdashboard::flex_dashboard:\n orientation: columns\n vertical_layout: fill\n---\n\n```{r setup, include=FALSE}\nlibrary(flexdashboard)\nlibrary(readr)\nlibrary(tidyverse)\nlibrary(lubridate)\nlibrary(plotly)\nlibrary(knitr)\nlibrary(DT)\n\ntrips_df <- read_csv('https://assets.datacamp.com/production/course_6355/datasets/sanfran_bikeshare_joined_oneday.csv')\n```\n\nColumn {data-width=650}\n-----------------------------------------------------------------------\n\n### Station Usage\n\n```{r}\n\nstation_trips_df <- trips_df %>%\n select(start_station_name, end_station_name) %>%\n pivot_longer(cols = start_station_name:end_station_name, names_to = 'Type', values_to = 'Station') %>%\n group_by(Station, Type) %>%\n summarize(n_trips = n()) %>% \n mutate(Type = ifelse(Type == 'start_station_name', 'Trip Starts', 'Trip Ends')) %>%\n pivot_wider(names_from = 'Type', values_from = 'n_trips') %>%\n replace_na(list(`Trip Starts` = 0, `Trip Ends` = 0)) %>%\n mutate(Gap = `Trip Ends` - `Trip Starts`)\n\n```\n\n\nColumn {data-width=350}\n-----------------------------------------------------------------------\n\n### Median Trip Length\n\n\n### % Short Trips\n\n\n### Trips by Start Time\n\n\n"}