CommencerCommencer gratuitement

Storyboard Commentary

Let's add commentary on the second part of the story.

Cet exercice fait partie du cours

Building Dashboards with flexdashboard

Afficher le cours

Instructions

  • Make the two bullet points of text before the first chart commentary on the second part of the story.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

{"my_document.Rmd":"---\ntitle: \"Bike Shares Daily\"\noutput: \n  flexdashboard::flex_dashboard:\n    orientation: columns\n    vertical_layout: fill\n    storyboard: true\n---\n\n```{r setup, include=FALSE}\nlibrary(flexdashboard)\nlibrary(readr)\nlibrary(leaflet)\nlibrary(DT)\nlibrary(tidyverse)\nlibrary(lubridate)\nlibrary(plotly)\n\ntrips_df <- read_csv('https://assets.datacamp.com/production/repositories/1448/datasets/1f12031000b09ad096880bceb61f6ca2fd95e2eb/sanfran_bikeshare_joined_oneday.csv')\n```\n\n* Bike `r most_used_bike_df$bike_number[1]` made its first trip from `r most_used_bike_df$start_station_name[1]` and ended its day at `r most_used_bike_df$end_station_name[nrow(most_used_bike_df)]`.\n* Its longest trip was `r max(most_used_bike_df$duration_sec)/60` minutes long.\n\n### Most bikes are used only a few times, but a few are used a lot\n\n```{r}\n\ntrips_per_bike_df <- trips_df %>%\n  group_by(bike_number) %>%\n  summarize(n_trips = n()) %>%\n  arrange(desc(n_trips)) \n\nbike_plot <- trips_per_bike_df %>%\n  ggplot(aes(x = n_trips)) +\n  geom_histogram(binwidth = 1) +\n  ylab('') +\n  xlab('Trips per bike') \n\nggplotly(bike_plot)\n\n```\n\n### Where did the most used bike go?\n\n```{r}\n\nmost_used_bike_df <- trips_df %>%\n  filter(bike_number == trips_per_bike_df$bike_number[1])\n\nmost_used_bike_df %>%\n  rename(latitude = start_latitude,\n         longitude = start_longitude) %>%\n  group_by(start_station_id, latitude, longitude) %>%\n  count() %>%\n  leaflet() %>%\n  addTiles() %>%\n  addMarkers()\n\n```\n\n\n"}
Modifier et exécuter le code