CommencerCommencer gratuitement

Commentaires du storyboard

Ajoutons des commentaires sur la deuxième partie de l’histoire.

Cet exercice fait partie du cours

Créer des tableaux de bord avec flexdashboard

Afficher le cours

Instructions

  • Transformez les deux puces de texte avant le premier graphique en commentaires sur la deuxième partie de l’histoire.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

{"my_document.Rmd":"---\ntitle: \"Bike Shares Daily\"\noutput: \n  flexdashboard::flex_dashboard:\n    orientation: columns\n    vertical_layout: fill\n    storyboard: true\n---\n\n```{r setup, include=FALSE}\nlibrary(flexdashboard)\nlibrary(readr)\nlibrary(leaflet)\nlibrary(DT)\nlibrary(tidyverse)\nlibrary(lubridate)\nlibrary(plotly)\n\ntrips_df <- read_csv('https://assets.datacamp.com/production/repositories/1448/datasets/1f12031000b09ad096880bceb61f6ca2fd95e2eb/sanfran_bikeshare_joined_oneday.csv')\n```\n\n* Bike `r most_used_bike_df$bike_number[1]` made its first trip from `r most_used_bike_df$start_station_name[1]` and ended its day at `r most_used_bike_df$end_station_name[nrow(most_used_bike_df)]`.\n* Its longest trip was `r max(most_used_bike_df$duration_sec)/60` minutes long.\n\n### Most bikes are used only a few times, but a few are used a lot\n\n```{r}\n\ntrips_per_bike_df <- trips_df %>%\n  group_by(bike_number) %>%\n  summarize(n_trips = n()) %>%\n  arrange(desc(n_trips)) \n\nbike_plot <- trips_per_bike_df %>%\n  ggplot(aes(x = n_trips)) +\n  geom_histogram(binwidth = 1) +\n  ylab('') +\n  xlab('Trips per bike') \n\nggplotly(bike_plot)\n\n```\n\n### Where did the most used bike go?\n\n```{r}\n\nmost_used_bike_df <- trips_df %>%\n  filter(bike_number == trips_per_bike_df$bike_number[1])\n\nmost_used_bike_df %>%\n  rename(latitude = start_latitude,\n         longitude = start_longitude) %>%\n  group_by(start_station_id, latitude, longitude) %>%\n  count() %>%\n  leaflet() %>%\n  addTiles() %>%\n  addMarkers()\n\n```\n\n\n"}
Modifier et exécuter le code