Añadir opciones de índice
Cuando se incluye toc_float, el índice aparece en la parte izquierda del documento y permanece visible mientras el lector se desplaza por el documento. Por defecto, muestra la cabecera más grande, se expandirá cuando alguien esté leyendo el informe o interactuando con el índice para navegar a otra sección, y anima los desplazamientos de página al navegar por el informe.
En este ejercicio, añadirás toc_float y modificarás estos ajustes utilizando los campos collapsed y smooth_scroll para que el índice completo permanezca visible y no se animen los desplazamientos de página.
Este ejercicio forma parte del curso
Informes con R Markdown
Instrucciones del ejercicio
- Debajo del campo
toc, añadetoc_floaty dos puntos al final del campo. - En una nueva línea, añade otra sangría y el campo
collapsed, para que el índice completo permanezca visible en todo el informe. - Añade otra línea y añade el campo
smooth_scrollpara que el desplazamiento de la página no sea animado.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\noutput: \n html_document:\n toc: true\n toc_depth: 3\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r brazil-investment-projects}\nbrazil_investment_projects <- investment_services_projects %>%\n filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `brazil_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r brazil-investment-projects-2018}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n filter(country == \"Brazil\",\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(brazil_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil in 2018\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}