ComenzarEmpieza gratis

Stacking RNN layers

Deep RNN models can have tens to hundreds of layers in order to achieve state-of-the-art results.

In this exercise, you will get a glimpse of how to create deep RNN models by stacking layers of LSTM cells one after the other.

To do this, you will set the return_sequences argument to True on the firsts two LSTM layers and to False on the last LSTM layer.

To create models with even more layers, you can keep adding them one after the other or create a function that uses the .add() method inside a loop to add many layers with few lines of code.

Este ejercicio forma parte del curso

Recurrent Neural Networks (RNNs) for Language Modeling with Keras

Ver curso

Instrucciones del ejercicio

  • Import the LSTM layer.
  • Return the sequences in the first two layers and don't return the sequences in the last LSTM layer.
  • Load the pre-trained weights.
  • Print the loss and accuracy obtained.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Import the LSTM layer
from tensorflow.keras.layers import ____

# Build model
model = Sequential()
model.add(LSTM(units=128, input_shape=(None, 1), return_sequences=____))
model.add(LSTM(units=128, return_sequences=____))
model.add(LSTM(units=128, return_sequences=____))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# Load pre-trained weights
model.____('lstm_stack_model_weights.h5')

____("Loss: %0.04f\nAccuracy: %0.04f" % tuple(model.evaluate(X_test, y_test, verbose=0)))
Editar y ejecutar código