Classification evaluation
Moving forward with evaluation metrics, this time you'll evaluate our logistic regression model from before with the goal of predicting the binary RainTomorrow
feature using humidity.
We have gone ahead and imported the model as clf
and the same test sets assigned to the X_test
and y_test
variables. Generate and analyze the confusion matrix and then compute both precision and recall before making a conclusion.
Este ejercicio forma parte del curso
Practicing Statistics Interview Questions in Python
Ejercicio interactivo práctico
Prueba este ejercicio completando el código de muestra.
# Generate and output the confusion matrix
from sklearn.metrics import confusion_matrix
preds = clf.predict(X_test)
matrix = confusion_matrix(____, ____)
print(____)