ComenzarEmpieza gratis

Using smoothing parameters to avoid overfitting

The smoothing parameter balances between likelihood and wiggliness to optimize model fit. Here, you'll examine smoothing parameters and will fit models with different fixed smoothing parameters.

Este ejercicio forma parte del curso

Nonlinear Modeling with Generalized Additive Models (GAMs) in R

Ver curso

Instrucciones del ejercicio

  • View the value of the smoothing parameter (\(\lambda\)) of the provided gam_mod model by extracting the sp value from the model.
  • Fit two models to the mcycle data with accel as a smooth function of times and a smoothing parameter of:
    • 0.1
    • 0.0001
  • Visualize both models.

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

library(mgcv)
# Extract the smoothing parameter
gam_mod <- gam(accel ~ s(times), data = mcycle, method = "REML")
___

# Fix the smoothing parameter at 0.1
gam_mod_s1 <- gam(accel ~ s(times), data = mcycle, sp = ___)

# Fix the smoothing parameter at 0.0001
gam_mod_s2 <- gam(___)

# Plot both models
par(mfrow = c(2, 1))
plot(gam_mod_s1, residuals = TRUE, pch = 1)
plot(gam_mod_s2, residuals = TRUE, pch = 1)
Editar y ejecutar código