Multivariate GAMs of auto performance
GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg
dataset available in the gamair
package to practice fitting models of different forms.
Este ejercicio forma parte del curso
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Instrucciones del ejercicio
- Use the
head()
andstr()
functions to examine thempg
data set. - Fit a GAM to these data to predict
city.mpg
as the sum of smooth functions ofweight
,length
, andprice
. - Use the
plot()
function provided to visualize the model.
Ejercicio interactivo práctico
Prueba este ejercicio completando el código de muestra.
library(mgcv)
# Examine the data
___
___
# Fit the model
mod_city <- gam(city.mpg ~ ___,
data = mpg, method = "REML")
# Plot the model
plot(mod_city, pages = 1)