Maximization function
We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation
function. Now, create the maximization
function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.
Este ejercicio forma parte del curso
Mixture Models in R
Instrucciones del ejercicio
Create the function maximization
by completing the sample code.
Ejercicio interactivo práctico
Prueba este ejercicio completando el código de muestra.
maximization <- function(___){
means_estimates <- data_with_probs %>%
summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
mean_2 = sum(x * ___) / ___(prob_cluster2)) %>%
as.numeric()
props_estimates <- data_with_probs %>%
summarise(proportion_1 = ___(prob_cluster1),
proportion_2 = 1 - ___) %>%
as.numeric()
list(means_estimates, props_estimates)
}