ComenzarEmpieza gratis

Dropping unnecessary features

Some features such as 'Area_Code' and 'Phone' are not useful when it comes to predicting customer churn, and they need to be dropped prior to modeling. The easiest way to do so in Python is using the .drop() method of pandas DataFrames, just as you saw in the video, where 'Soc_Sec' and 'Tax_ID' were dropped:

telco.drop(['Soc_Sec', 'Tax_ID'], axis=1)

Here, axis=1 indicates that you want to drop 'Soc_Sec' and 'Tax_ID' from the columns.

Este ejercicio forma parte del curso

Marketing Analytics: Predicting Customer Churn in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Drop the unnecessary features
telco = ____
Editar y ejecutar código