ComenzarEmpieza gratis

Visualizing feature importances

Your random forest classifier from earlier exercises has been fit to the telco data and is available to you as clf. Let's visualize the feature importances and get a sense for what the drivers of churn are, using matplotlib's barh to create a horizontal bar plot of feature importances.

Este ejercicio forma parte del curso

Marketing Analytics: Predicting Customer Churn in Python

Ver curso

Instrucciones del ejercicio

  • Calculate the feature importances of clf.
  • Use plt.barh() to create a horizontal bar plot of importances.

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Calculate feature importances
importances = ____.____

# Create plot
____.____(range(X.shape[1]), ____)
plt.show()
Editar y ejecutar código