ComenzarEmpieza gratis

Interpretation of model fit

The following table displays part of the summary output of the multiple linear regression model.

Call:
lm(formula = salesThisMon ~ nItems + ... + customerDuration, data = salesData)

Residuals:
    Min      1Q  Median      3Q     Max 
-322.66  -51.26    0.60   51.28  399.10 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   -2.828e+02  1.007e+01 -28.079  < 2e-16 ***
nItems                         1.470e-01  2.093e-02   7.023 2.45e-12 ***
mostFreqStoreColorado Springs -7.829e+00  4.351e+00  -1.799 0.072047 .  
mostFreqStoreColumbus          5.960e-01  3.682e+00   0.162 0.871391    
...
mostFreqCatBaby               -3.496e+00  3.469e+00  -1.008 0.313594    
mostFreqCatBakery             -9.908e+00  5.451e+00  -1.818 0.069188 .  
...   
nCats                         -9.585e-01  1.956e-01  -4.900 9.90e-07 ***
nPurch                         5.092e-01  1.513e-01   3.364 0.000773 ***
salesLast3Mon                  3.782e-01  8.480e-03  44.604  < 2e-16 ***
daysSinceLastPurch             1.712e-01  1.526e-01   1.122 0.262022    
meanItemPrice                  2.253e-01  9.168e-02   2.457 0.014034 *  
meanShoppingCartValue          2.584e-01  2.620e-02   9.861  < 2e-16 ***
customerDuration               5.708e-01  7.162e-03  79.707  < 2e-16 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 77.56 on 5095 degrees of freedom
Multiple R-squared:  0.8236,    Adjusted R-squared:  0.8227 
F-statistic: 914.9 on 26 and 5095 DF,  p-value: < 2.2e-16

Look at the model fit statistics. How much of the dependent variable's variation is explained by the explanatory variables?

Este ejercicio forma parte del curso

Machine Learning for Marketing Analytics in R

Ver curso

Ejercicio interactivo práctico

Pon en práctica la teoría con uno de nuestros ejercicios interactivos

Empezar ejercicio