ComenzarEmpieza gratis

Replacing missing values with constants

While removing missing data entirely maybe a correct approach in many situations, this may result in a lot of information being omitted from your models.

You may find categorical columns where the missing value is a valid piece of information in itself, such as someone refusing to answer a question in a survey. In these cases, you can fill all missing values with a new category entirely, for example 'No response given'.

Este ejercicio forma parte del curso

Feature Engineering for Machine Learning in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Print the count of occurrences
print(so_survey_df['Gender']____)
Editar y ejecutar código