ComenzarEmpieza gratis

Replacing missing values with constants

While removing missing data entirely maybe a correct approach in many situations, this may result in a lot of information being omitted from your models.

You may find categorical columns where the missing value is a valid piece of information in itself, such as someone refusing to answer a question in a survey. In these cases, you can fill all missing values with a new category entirely, for example 'No response given'.

Este ejercicio forma parte del curso

Feature Engineering for Machine Learning in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Print the count of occurrences
print(so_survey_df['Gender']____)
Editar y ejecutar código