One-hot encoding and dummy variables
To use categorical variables in a machine learning model, you first need to represent them in a quantitative way. The two most common approaches are to one-hot encode the variables using or to use dummy variables. In this exercise, you will create both types of encoding, and compare the created column sets. We will continue using the same DataFrame from previous lesson loaded as so_survey_df
and focusing on its Country
column.
Este ejercicio forma parte del curso
Feature Engineering for Machine Learning in Python
Ejercicio interactivo práctico
Prueba este ejercicio completando el código de muestra.
# Convert the Country column to a one hot encoded Data Frame
one_hot_encoded = ____(____, ____=['Country'], prefix='OH')
# Print the columns names
print(one_hot_encoded.columns)