Assembling your first ensemble
It's time to build your first ensemble model! The Pokémon dataset from the previous exercise has been loaded and split into train and test sets.
Your job is to leverage the voting ensemble technique using the sklearn API. It's up to you to instantiate the individual models and pass them as parameters to build your first voting classifier.
Este ejercicio forma parte del curso
Ensemble Methods in Python
Instrucciones del ejercicio
- Instantiate a
KNeighborsClassifiercalledclf_knnwith 5 neighbors (specified usingn_neighbors). - Instantiate a
"balanced"LogisticRegressioncalledclf_lr(specified usingclass_weight). - Instantiate a
DecisionTreeClassifiercalledclf_dtwithmin_samples_leaf = 3andmin_samples_split = 9. - Build a
VotingClassifierusing the parameterestimatorsto specify the following list of (str, estimator) tuples:'knn',clf_knn,'lr',clf_lr, and'dt',clf_dt.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Instantiate the individual models
clf_knn = ____
clf_lr = ____
clf_dt = ____(____, ____, random_state=500)
# Create and fit the voting classifier
clf_vote = ____(
estimators=[('____', ____), ('____', ____), ('____', ____)]
)
clf_vote.fit(X_train, y_train)