ComenzarEmpieza gratis

Restricted and unrestricted decision trees

For this exercise, we will revisit the Pokémon dataset from the last chapter. Recall that the goal is to predict whether or not a given Pokémon is legendary.

Here, you will build two separate decision tree classifiers. In the first, you will specify the parameters min_samples_leaf and min_samples_split, but not a maximum depth, so that the tree can fully develop without any restrictions.

In the second, you will specify some constraints by limiting the depth of the decision tree. By then comparing the two models, you'll better understand the notion of a "weak" learner.

Este ejercicio forma parte del curso

Ensemble Methods in Python

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Build unrestricted decision tree
clf = ____
clf.fit(X_train, y_train)

# Predict the labels
pred = clf.predict(X_test)

# Print the confusion matrix
cm = confusion_matrix(y_test, pred)
print('Confusion matrix:\n', cm)

# Print the F1 score
score = f1_score(y_test, pred)
print('F1-Score: {:.3f}'.format(score))
Editar y ejecutar código