Recoding the topics
There's one more step of data cleaning to make this more interpretable. Right now, topics are represented by two-letter codes:
- me: Palestinian conflict
- nu: Nuclear weapons and nuclear material
- di: Arms control and disarmament
- hr: Human rights
- co: Colonialism
- ec: Economic development
So that you can interpret the data more easily, recode the data to replace these codes with their full name. You can do that with dplyr's recode() function, which replaces values with ones you specify:
example <- c("apple", "banana", "apple", "orange")
recode(example,
apple = "plum",
banana = "grape")
Este ejercicio forma parte del curso
Case Study: Exploratory Data Analysis in R
Instrucciones del ejercicio
Use the recode() function from dplyr in a mutate() to replace each two-letter code in the votes_gathered data frame with the corresponding full name. Save this as votes_tidied.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Replace the two-letter codes in topic: votes_tidied
votes_tidied <- ___ %>%
mutate(topic = recode(___,
___ = "Palestinian conflict",
___ = "Nuclear weapons and nuclear material",
___ = "Arms control and disarmament",
___ = "Human rights",
___ = "Colonialism",
___ = "Economic development"))