Counting words (I)
Once high level information has been recorded you can begin creating features based on the actual content of each text. One way to do this is to approach it in a similar way to how you worked with categorical variables in the earlier lessons.
- For each unique word in the dataset a column is created.
- For each entry, the number of times this word occurs is counted and the count value is entered into the respective column.
These "count" columns can then be used to train machine learning models.
Diese Übung ist Teil des Kurses
Feature Engineering for Machine Learning in Python
Anleitung zur Übung
- Import
CountVectorizer
fromsklearn.feature_extraction.text
. - Instantiate
CountVectorizer
and assign it tocv
. - Fit the vectorizer to the
text_clean
column. - Print the feature names generated by the vectorizer.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Import CountVectorizer
____
# Instantiate CountVectorizer
cv = ____
# Fit the vectorizer
cv.____(speech_df['text_clean'])
# Print feature names
print(cv.____)