LoslegenKostenlos loslegen

One-hot encoding and dummy variables

To use categorical variables in a machine learning model, you first need to represent them in a quantitative way. The two most common approaches are to one-hot encode the variables using or to use dummy variables. In this exercise, you will create both types of encoding, and compare the created column sets. We will continue using the same DataFrame from previous lesson loaded as so_survey_df and focusing on its Country column.

Diese Übung ist Teil des Kurses

Feature Engineering for Machine Learning in Python

Kurs anzeigen

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Convert the Country column to a one hot encoded Data Frame
one_hot_encoded = ____(____, ____=['Country'], prefix='OH')

# Print the columns names
print(one_hot_encoded.columns)
Code bearbeiten und ausführen