LoslegenKostenlos loslegen

Exploring the UCI SECOM data

To round out this chapter and solidify your understanding of bagging, it's time to work with a new dataset! This data is from a semi-conductor manufacturing process, obtained from the UCI Machine Learning Repository.

Each row represents a production entity. The features are measurements from sensors or points in the process. The labels represent whether the entity passes (1) or fails (-1) the test.

The dataset is loaded and available to you as uci_secom. The target variable is the 'Pass/Fail' column. Use the .value_counts() and .describe() methods to check this variable. What do you notice?

Diese Übung ist Teil des Kurses

Ensemble Methods in Python

Kurs anzeigen

Interaktive Übung

In dieser interaktiven Übung kannst du die Theorie in die Praxis umsetzen.

Übung starten