LoslegenKostenlos loslegen

Delete MCAR

Analyzing and appropriately treating missing values is a tricky job. However, dealing with them is very simple if the number of missing values is very small. In the video exercise, you learned how to properly identify, when to drop, and remove missing data.

In this exercise, you'll listwise delete the rows where the Glucose column has missing values. The diabetes DataFrame and the missingnopackage as msno has already been loaded for you.

Note that we've used a proprietary display() function instead of plt.show() to make it easier for you to view the output.

Diese Übung ist Teil des Kurses

Dealing with Missing Data in Python

Kurs anzeigen

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Visualize the missingness of diabetes prior to dropping missing values
___

# Display nullity matrix
display("/usr/local/share/datasets/matrix_diabetes.png")
Code bearbeiten und ausführen