Analyzing custom segments
As a final step, you will analyze average values of Recency
, Frequency
and MonetaryValue
for the custom segments you've created.
We have loaded the datamart
dataset with the segment values you have calculated in the previous exercise. Feel free to explore it in the console. pandas
library is also loaded as pd
.
Diese Übung ist Teil des Kurses
Customer Segmentation in Python
Anleitung zur Übung
- Calculate the averages for
Recency
,Frequency
andMonetaryValue
for eachRFM_Level
segment. - As the last column, return the size of each segment passing
count
to theMonetaryValue
column next to themean
. - Print the aggregated dataset.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Calculate average values for each RFM_Level, and return a size of each segment
rfm_level_agg = datamart.____('____').____({
'____': '____',
'____': '____',
# Return the size of each segment
'____': ['____', '____']
}).round(1)
# Print the aggregated dataset
print(____)