Build 4-cluster solution
Perfect, you can see the the recommended number of clusters is somewhere between 3 and 4. Now, you will build the latter number of clusters in this exercise.
The normalized RFMT dataset is available as datamart_rfmt_normalized
, feel free to use the console to explore it.
Diese Übung ist Teil des Kurses
Customer Segmentation in Python
Anleitung zur Übung
- Import
KMeans
fromsklearn
library. - Initialize
KMeans
with 4 clusters and random state 1. - Fit k-means clustering on the normalized data set.
- Extract cluster labels and store them as
cluster_labels
object.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Import KMeans
from ____.____ import ____
# Initialize KMeans
kmeans = ____(____, ____)
# Fit k-means clustering on the normalized data set
____.____(____)
# Extract cluster labels
cluster_labels = ____.____