LoslegenKostenlos loslegen

Isolation Forest on time series

If you want to use all the information available, you can fit a multivariate outlier detector to the entire dataset. The multivariate approach also enables you to extract more features from time series to enhance model performance.

Practice creating new features from a DatetimeIndex and fitting an outlier detector on them using the apple dataset, which has already been loaded with a DatetimeIndex.

Also, recall the random_state parameter, which can be used to generate reproducible results.

Diese Übung ist Teil des Kurses

Anomaly Detection in Python

Kurs anzeigen

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Create three new features from the DatetimeIndex
apple['day_of_week'] = ____
apple['month'] = ____
apple['day_of_month'] = _____
Code bearbeiten und ausführen