Differentiating distance metrics
It is crucial to capture the subtle differences between the manhattan, euclidean and Minkowski distance metrics. Using them correctly ensures the optimal performance of outlier classifiers on various datasets.
Remember from the formula that changing the parameter p
will switch between euclidean, manhattan and other degrees of the Minkowski distance.
Diese Übung ist Teil des Kurses
Anomaly Detection in Python
Interaktive Übung
Setze die Theorie in einer unserer interaktiven Übungen in die Praxis um
