Plotting distributions
Understanding how both discrete (e.g. binomial) and continuous (e.g. normal) probability distributions play a role in A/B testing enables us to gain additional visual insights into the nature of the data and deeper conceptual understanding of the theories that power the statistical frameworks of online experimentation.
Of great importance are two distributions: the binomial and the normal distributions. Follow the instructions to create plots and explore their parameters.
Diese Übung ist Teil des Kurses
A/B Testing in Python
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
from scipy.stats import binom
# Plot a binomial distribution
p = ____
n = ____
x = np.arange(n*p - 100, n*p + 100)
binom_a = ____.____(____, ____, ____)
plt.bar(x, binom_a)
plt.xlabel('Purchased')
plt.ylabel('PMF')
plt.show()