Confidence intervals for proportions
Drawing random samples from a population produces slightly different confidence intervals.
The confidence level represents the percentage of the those intervals that capture the true population parameter. For example, we can expect that 90% of the confidence intervals produced at the 90% confidence level to contain the population parameter. pandas
, numpy
, and proportion_confint
have been imported for you.
Diese Übung ist Teil des Kurses
A/B Testing in Python
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Calculate the average purchase rate for group A
pop_mean = checkout[checkout['____'] == '____']['____'].____()
print(pop_mean)