Before diving into sophisticated statistical inference techniques, you should first explore your data by plotting them and computing simple summary statistics. This process, called exploratory data analysis, is a crucial first step in statistical analysis of data.

View Chapter Details

2

Quantitative Exploratory Data Analysis

0%

In this chapter, you will compute useful summary statistics, which serve to concisely describe salient features of a dataset with a few numbers.

View Chapter Details

3

Thinking Probabilistically-- Discrete Variables

0%

Statistical inference rests upon probability. Because we can very rarely say anything meaningful with absolute certainty from data, we use probabilistic language to make quantitative statements about data. In this chapter, you will learn how to think probabilistically about discrete quantities: those that can only take certain values, like integers.

View Chapter Details

4

Thinking Probabilistically-- Continuous Variables

0%

It’s time to move onto continuous variables, such as those that can take on any fractional value. Many of the principles are the same, but there are some subtleties. At the end of this final chapter, you will be speaking the probabilistic language you need to launch into the inference techniques covered in the sequel to this course.

View Chapter Details

Show SlidesShow VideoTake NotesContinue Learning on MobileProvide Feedback