ComeçarComece de graça

Sentiment analysis on formatted text

In this exercise, you'll calculate the sentiment on the customer channel of call_2.wav (file).

You've split the customer channel and saved it to call_2_channel_2.wav (file).

But from your experience with sentiment analysis, you know it can change sentence to sentence.

To calculate it sentence to sentence, you split the split using NLTK's sent_tokenize() module.

But transcribe_audio() doesn't return sentences. To try sentiment anaylsis with sentences, you've tried a paid API service to get call_2_channel_2_paid_api_text which has sentences.

Este exercício faz parte do curso

Spoken Language Processing in Python

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

from nltk.sentiment.vader import SentimentIntensityAnalyzer

# Create SentimentIntensityAnalyzer instance
sid = SentimentIntensityAnalyzer()

# Transcribe customer channel of call 2
call_2_channel_2_text = transcribe_audio(____)

# Display text and sentiment polarity scores
print(call_2_channel_2_text)
print(sid.____(call_2_channel_2_text))
Editar e executar o código