ComeçarComece de graça

CV fine-tuning: trainer configuration

Now that you have prepared the dataset and adapted a pretrained model to the new classes, it is time to configure your trainer.

The TrainingArguments and Trainer have been loaded from the transformers library. The model (model) and dataset (dataset) have been loaded as you previously configured them.

Este exercício faz parte do curso

Multi-Modal Models with Hugging Face

Ver curso

Instruções do exercício

  • Adjust the learning rate to 6e-5.
  • Provide the model, training data, and test data to the Trainer instance.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

training_args = TrainingArguments(
    output_dir="dataset_finetune",
    # Adjust the learning rate
    ____,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    push_to_hub=False
)

trainer = Trainer(
    # Provide the model and datasets
    model=____,
    args=training_args,
    data_collator=data_collator,
    train_dataset=____,
    eval_dataset=____,
    processing_class=image_processor,
    compute_metrics=compute_metrics,
)
Editar e executar o código