Improving the plot
In order to make the plot more readable, we need to do achieve two goals:
- Re-order the bars in ascending order.
- Add labels to the plot that correspond to the feature names.
To do this, we'll take advantage of NumPy indexing. The .argsort()
method sorts an array and returns the indices. We'll use these indices to achieve both goals.
Este exercício faz parte do curso
Marketing Analytics: Predicting Customer Churn in Python
Instruções do exercício
- Calculate the sorted indices of
importances
by usingnp.argsort()
onimportances
. - Create the sorted labels by accessing the columns of
X
and indexing bysorted_index
. - Create the plot by indexing
importances
usingsorted_index
and specifying the keyword argumenttick_label=labels
.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Sort importances
sorted_index = ____(____)
# Create labels
labels = X.columns[____]
# Clear current plot
plt.clf()
# Create plot
plt.barh(range(X.shape[1]), importances[____], tick_label=____)
plt.show()