ComeçarComece de graça

Improving the plot

In order to make the plot more readable, we need to do achieve two goals:

  • Re-order the bars in ascending order.
  • Add labels to the plot that correspond to the feature names.

To do this, we'll take advantage of NumPy indexing. The .argsort() method sorts an array and returns the indices. We'll use these indices to achieve both goals.

Este exercício faz parte do curso

Marketing Analytics: Predicting Customer Churn in Python

Ver curso

Instruções do exercício

  • Calculate the sorted indices of importances by using np.argsort() on importances.
  • Create the sorted labels by accessing the columns of X and indexing by sorted_index.
  • Create the plot by indexing importances using sorted_index and specifying the keyword argument tick_label=labels.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Sort importances
sorted_index = ____(____)

# Create labels
labels = X.columns[____]

# Clear current plot
plt.clf()

# Create plot
plt.barh(range(X.shape[1]), importances[____], tick_label=____)
plt.show()
Editar e executar o código