ComeçarComece de graça

Visualizing feature importances

Your random forest classifier from earlier exercises has been fit to the telco data and is available to you as clf. Let's visualize the feature importances and get a sense for what the drivers of churn are, using matplotlib's barh to create a horizontal bar plot of feature importances.

Este exercício faz parte do curso

Marketing Analytics: Predicting Customer Churn in Python

Ver curso

Instruções do exercício

  • Calculate the feature importances of clf.
  • Use plt.barh() to create a horizontal bar plot of importances.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Calculate feature importances
importances = ____.____

# Create plot
____.____(range(X.shape[1]), ____)
plt.show()
Editar e executar o código