Tuning other hyperparameters
The power of GridSearchCV
really comes into play when you're tuning multiple hyperparameters, as then the algorithm tries out all possible combinations of hyperparameters to identify the best combination. Here, you'll tune the following random forest hyperparameters:
Hyperparameter | Purpose |
---|---|
criterion | Quality of Split |
max_features | Number of features for best split |
max_depth | Max depth of tree |
bootstrap | Whether Bootstrap samples are used |
The hyperparameter grid has been specified for you, along with a random forest classifier called clf
.
Este exercício faz parte do curso
Marketing Analytics: Predicting Customer Churn in Python
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Import GridSearchCV
from sklearn.model_selection import GridSearchCV
# Create the hyperparameter grid
param_grid = {"max_depth": [3, None],
"max_features": [1, 3, 10],
"bootstrap": [True, False],
"criterion": ["gini", "entropy"]}
# Call GridSearchCV
grid_search = ____(___,___,cv=3)