ComeçarComece de graça

Alternative segmentation with NMF

In this exercise, you will analyze product purchase data and identify meaningful segments using non-negative matrix factorization algorithm (NMF). It works well with sparse customer by product matrices that are typical in the e-commerce or retail space. Finally, you will extract the components that you will then explore in the upcoming exercise.

We have loaded pandas as pd and numpy as np. Also, the raw customer by product purchase dataset has been loaded as wholesale.

Este exercício faz parte do curso

Machine Learning for Marketing in Python

Ver curso

Instruções do exercício

  • Import the non-negative matrix factorization function from sklearn.decomposition.
  • Initialize NMF instance with 4 components.
  • Fit the model on the wholesale sales data.
  • Extract and store the components as a pandas DataFrame.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Import the non-negative matrix factorization module
from sklearn.decomposition import ___

# Initialize NMF instance with 4 components
nmf = ___(4)

# Fit the model on the wholesale sales data
nmf.___(wholesale)

# Extract the components 
components = pd.DataFrame(data=nmf.___, columns=wholesale.columns)
Editar e executar o código