ComeçarComece de graça

Find the global optimum

You've been provided with the following profit maximization problem and are tasked with finding the global maximum.

\(\Pi= -\frac{1}{4}q^4 + 11q^3 - 160q^2 + 900q\)

\(0\) is a natural lower bound for quantity and you observed that at \(q=30\) profit is negative, so \(30\) is a good candidate for upper bound.

Find the global optimum for this problem.

basinhopping has been imported for you.

Este exercício faz parte do curso

Introduction to Optimization in Python

Ver curso

Instruções do exercício

  • Define the dictionary kwargs of keyword arguments, with bounds \(0\) and \(30\).
  • Run basinhopping, with the objective as negative of profit and the initial guess x0 passed to the minimizer kwargs.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

def profit(q): 
	return -q**4 / 4 + 11 * q**3 - 160 * q**2 + 900 * q
  
x0 = 0

# Define the keyword arguments for bounds
kwargs = {"bounds": [(____, ____)]} 

# Run basinhopping to find the optimal quantity
result = basinhopping(____ q: -profit(q), ____, ____=kwargs)

print(f"{result.message}")
print(f"The maximum according to basinhopping(x0={x0}) is at {result.x[0]:.2f}\n")
Editar e executar o código