Especifique os pacotes no primeiro chunk de código
Copiamos os resultados da sua análise feita no segundo capítulo para outro relatório RMarkdown, mostrado aqui à direita. Ele usa a sua estrutura dos exercícios anteriores e tem chunks de código R adicionados às respectivas seções.
No entanto, falta algo: as informações sobre o software que você usou. Especificar os pacotes necessários para uma determinada análise é uma necessidade se você quiser garantir a reprodutibilidade, para que outras pessoas possam reutilizar seu trabalho.
Lembre-se de definir seu chunk de código R da seguinte forma!
```{r}
# Some code
```
Este exercício faz parte do curso
Comunicando com Dados no Tidyverse
Instruções do exercício
- Primeiro, familiarize-se com a estrutura do novo documento RMarkdown com o qual você vai trabalhar a partir de agora.
- Na seção "Preparations", adicione um novo chunk de código R e exclua o texto de espaço reservado. Nesse chunk, carregue as bibliotecas do Tidyverse
dplyr,ggplot2eforcats.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
{"my_document.Rmd":"---\ntitle: \"The reduction in weekly working hours in Europe\" \nsubtitle: \"Looking at the development between 1996 and 2006\"\nauthor: \"Insert your name here\"\noutput: html_document\n---\n\n## Summary \n\nThe **International Labour Organization (ILO)** has many [data sets](http://www.ilo.org/global/statistics-and-databases/lang--en/index.htm) on working conditions. For example, one can look at how weekly working hours have been decreasing in many countries of the world, while monetary compensation has risen. In this report, *the reduction in weekly working hours* in European countries is analysed, and a comparison between 1996 and 2006 is made. All analysed countries have seen a decrease in weekly working hours since 1996 – some more than others.\n\n## Preparations \n\nThis is where you have to load the necessary R packages.\n\n## Analysis\n\n### Data\n\nThe herein used data can be found in the [statistics database of the ILO](http://www.ilo.org/ilostat/faces/wcnav_defaultSelection;ILOSTATCOOKIE=ZOm2Lqrr-OIuzxNGn2_08bNe9AmHQ1kUA6FydqyZJeIudFLb2Yz5!1845546174?_afrLoop=32158017365146&_afrWindowMode=0&_afrWindowId=null#!%40%40%3F_afrWindowId%3Dnull%26_afrLoop%3D32158017365146%26_afrWindowMode%3D0%26_adf.ctrl-state%3D4cwaylvi8_4). For the purpose of this course, it has been slightly preprocessed.\n\n```{r}\nload(url(\"http://s3.amazonaws.com/assets.datacamp.com/production/course_5807/datasets/ilo_data.RData\"))\n```\n\n```{r}\n# Some summary statistics\nilo_data %>%\n group_by(year) %>%\n summarize(mean_hourly_compensation = mean(hourly_compensation),\n mean_working_hours = mean(working_hours))\n```\n\nAs can be seen from the above table, the average weekly working hours of European countries have been descreasing since 1980.\n\n### Preprocessing\n\nThe data is now filtered so it only contains the years 1996 and 2006 – a good time range for comparison. \n\n```{r}\nilo_data <- ilo_data %>%\n filter(year == \"1996\" | year == \"2006\")\n \n# Reorder country factor levels\nilo_data <- ilo_data %>%\n # Arrange data frame first, so last is always 2006\n arrange(year) %>%\n # Use the fct_reorder function inside mutate to reorder countries by working hours in 2006\n mutate(country = fct_reorder(country,\n working_hours,\n last))\n``` \n\n### Results\n\nIn the following, a plot that shows the reduction of weekly working hours from 1996 to 2006 in each country is produced.\n\nFirst, a custom theme is defined.\n\n```{r}\n# Better to define your own function than to always type the same stuff\ntheme_ilo <- function(){\n theme_minimal() +\n theme(\n text = element_text(family = \"Bookman\", color = \"gray25\"),\n plot.subtitle = element_text(size = 12),\n plot.caption = element_text(color = \"gray30\"),\n plot.background = element_rect(fill = \"gray95\"),\n plot.margin = unit(c(5, 10, 5, 10), units = \"mm\")\n )\n}\n``` \n\nThen, the plot is produced. \n\n```{r}\n# Compute temporary data set for optimal label placement\nmedian_working_hours <- ilo_data %>%\n group_by(country) %>%\n summarize(median_working_hours_per_country = median(working_hours)) %>%\n ungroup()\n\n# Have a look at the structure of this data set\nstr(median_working_hours)\n\n# Plot\nggplot(ilo_data) +\n geom_path(aes(x = working_hours, y = country),\n arrow = arrow(length = unit(1.5, \"mm\"), type = \"closed\")) +\n # Add labels for values (both 1996 and 2006)\n geom_text(\n aes(x = working_hours,\n y = country,\n label = round(working_hours, 1),\n hjust = ifelse(year == \"2006\", 1.4, -0.4)\n ),\n # Change the appearance of the text\n size = 3,\n family = \"Bookman\",\n color = \"gray25\"\n ) +\n # Add labels for country\n geom_text(data = median_working_hours,\n aes(y = country,\n x = median_working_hours_per_country,\n label = country),\n vjust = 2,\n family = \"Bookman\",\n color = \"gray25\") +\n # Add titles\n labs(\n title = \"People work less in 2006 compared to 1996\",\n subtitle = \"Working hours in European countries, development since 1996\",\n caption = \"Data source: ILO, 2017\"\n ) +\n # Apply your theme \n theme_ilo() +\n # Remove axes and grids\n theme(\n axis.ticks = element_blank(),\n axis.title = element_blank(),\n axis.text = element_blank(),\n panel.grid = element_blank(),\n # Also, let's reduce the font size of the subtitle\n plot.subtitle = element_text(size = 9)\n ) +\n # Reset coordinate system\n coord_cartesian(xlim = c(25, 41))\n```\n\n\n"}