CV fine-tuning: trainer configuration
Now that you have prepared the dataset and adapted a pretrained model to the new classes, it is time to configure your trainer.
The TrainingArguments and Trainer have been loaded from the transformers library. The model (model) and dataset (dataset) have been loaded as you previously configured them.
Deze oefening maakt deel uit van de cursus
Multi-Modal Models with Hugging Face
Oefeninstructies
- Adjust the learning rate to
6e-5. - Provide the model, training data, and test data to the
Trainerinstance.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
training_args = TrainingArguments(
output_dir="dataset_finetune",
# Adjust the learning rate
____,
gradient_accumulation_steps=4,
num_train_epochs=3,
push_to_hub=False
)
trainer = Trainer(
# Provide the model and datasets
model=____,
args=training_args,
data_collator=data_collator,
train_dataset=____,
eval_dataset=____,
processing_class=image_processor,
compute_metrics=compute_metrics,
)