Aan de slagGa gratis aan de slag

CV fine-tuning: trainer configuration

Now that you have prepared the dataset and adapted a pretrained model to the new classes, it is time to configure your trainer.

The TrainingArguments and Trainer have been loaded from the transformers library. The model (model) and dataset (dataset) have been loaded as you previously configured them.

Deze oefening maakt deel uit van de cursus

Multi-Modal Models with Hugging Face

Cursus bekijken

Oefeninstructies

  • Adjust the learning rate to 6e-5.
  • Provide the model, training data, and test data to the Trainer instance.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

training_args = TrainingArguments(
    output_dir="dataset_finetune",
    # Adjust the learning rate
    ____,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    push_to_hub=False
)

trainer = Trainer(
    # Provide the model and datasets
    model=____,
    args=training_args,
    data_collator=data_collator,
    train_dataset=____,
    eval_dataset=____,
    processing_class=image_processor,
    compute_metrics=compute_metrics,
)
Code bewerken en uitvoeren