Comparing estimated and realized performance
Now that you have seen how performance calculation works, your task is to calculate the realized performance for our tip prediction model for the NYC green taxi dataset.
The reference and analysis set is already loaded and saved in the reference and analysis variables.
In addition, results from the DLE algorithm for tip prediction are stored in the estimated_results variable.
Deze oefening maakt deel uit van de cursus
Monitoring Machine Learning in Python
Oefeninstructies
- Specify problem type as
regressionin calculator initialization. - Fit the calculator with reference data and calculate performance for the analysis set.
- Show comparison plot between
realized_resultsandestimated_resultsusingcompare()method.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Intialize the calculator
calculator = nannyml.PerformanceCalculator(
y_true='tip_amount',
y_pred='y_pred',
chunk_period='d',
metrics=['mae'],
timestamp_column_name='lpep_pickup_datetime',
problem_type=____)
# Fit the calculator
calculator.fit(____)
realized_results = calculator.____(____)
# Show comparison plot for realized and estimated performance
____.____(____).plot().show()