Aan de slagGa gratis aan de slag

Predicting using a classification model

Now that you have fit your classifier, let's use it to predict the type of flower (or class) for some newly-collected flowers.

Information about petal width and length for several new flowers is stored in the variable targets. Using the classifier you fit, you'll predict the type of each flower.

Deze oefening maakt deel uit van de cursus

Machine Learning for Time Series Data in Python

Cursus bekijken

Oefeninstructies

  • Predict the flower type using the array X_predict.
  • Run the given code to visualize the predictions.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create input array
X_predict = targets[['petal length (cm)', 'petal width (cm)']]

# Predict with the model
predictions = ____
print(predictions)

# Visualize predictions and actual values
plt.scatter(X_predict['petal length (cm)'], X_predict['petal width (cm)'],
            c=predictions, cmap=plt.cm.coolwarm)
plt.title("Predicted class values")
plt.show()
Code bewerken en uitvoeren