Label the data
A dataframe df is available having columns endword: string, features: vector, and outvec: vector. You are to select the rows where endword equals "him", and add a column label having the integer value 1. Then, use the union operation to add an equal number of rows having endword not equals to him, such that these additional rows have label = 0.
As a reminder, in SQL the not equals comparison is done using <>.
Deze oefening maakt deel uit van de cursus
Introduction to Spark SQL in Python
Oefeninstructies
- Import the
litfunction. - Select the rows where endword is 'him' and add a integer column
labelhaving the value 1. - Select the rows where endword is not 'him' and add a integer column
labelhaving the value 0. - Union these two sets, using a number of negative examples equal to the number of positive examples.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import the lit function
from pyspark.____ import lit
# Select the rows where endword is 'him' and label 1
df_pos = df.where("____ = 'him'")\
.withColumn('label', lit(____))
# Select the rows where endword is not 'him' and label 0
df_neg = df.where("endword <> '____'")\
.withColumn('label', ____(0))
# Union pos and neg in equal number
df_examples = df_pos.____(df_neg.limit(df_pos.count()))
print("Number of examples: ", df_examples.count())
df_examples.where("endword <> 'him'").sample(False, .1, 42).show(5)