Aan de slagGa gratis aan de slag

Aggregating the same column twice

There are cases where dot notation can be more cumbersome than SQL. This exercise calculates the first and last times for each train line. The following code does this using dot notation.

from pyspark.sql.functions import min, max, col
expr = [min(col("time")).alias('start'), max(col("time")).alias('end')]
dot_df = df.groupBy("train_id").agg(*expr)
dot_df.show()
+--------+-----+-----+
|train_id|start|  end|
+--------+-----+-----+
|     217|6:06a|6:59a|
|     324|7:59a|9:05a|
+--------+-----+-----+

Your mission is to achieve this same result using a SQL query. The dataframe df has been registered as a table named schedule.

Deze oefening maakt deel uit van de cursus

Introduction to Spark SQL in Python

Cursus bekijken

Oefeninstructies

  • Write a SQL query that gives an identical result to the dot notation query.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Write a SQL query giving a result identical to dot_df
query = "SELECT ____ FROM schedule ____ ____ ____"
sql_df = spark.sql(query)
sql_df.show()
Code bewerken en uitvoeren