Find the global optimum
You've been provided with the following profit maximization problem and are tasked with finding the global maximum.
\(\Pi= -\frac{1}{4}q^4 + 11q^3 - 160q^2 + 900q\)
\(0\) is a natural lower bound for quantity and you observed that at \(q=30\) profit is negative, so \(30\) is a good candidate for upper bound.
Find the global optimum for this problem.
basinhopping has been imported for you.
Deze oefening maakt deel uit van de cursus
Introduction to Optimization in Python
Oefeninstructies
- Define the dictionary
kwargsof keyword arguments, with bounds \(0\) and \(30\). - Run
basinhopping, with the objective as negative ofprofitand the initial guessx0passed to the minimizerkwargs.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
def profit(q):
return -q**4 / 4 + 11 * q**3 - 160 * q**2 + 900 * q
x0 = 0
# Define the keyword arguments for bounds
kwargs = {"bounds": [(____, ____)]}
# Run basinhopping to find the optimal quantity
result = basinhopping(____ q: -profit(q), ____, ____=kwargs)
print(f"{result.message}")
print(f"The maximum according to basinhopping(x0={x0}) is at {result.x[0]:.2f}\n")