Evaluating model accuracy on validation dataset
Now it's your turn to monitor model accuracy with a validation data set. A model definition has been provided as model. Your job is to add the code to compile it and then fit it. You'll check the validation score in each epoch.
Deze oefening maakt deel uit van de cursus
Introduction to Deep Learning in Python
Oefeninstructies
- Compile your model using
'adam'as theoptimizerand'categorical_crossentropy'for theloss. To see what fraction of predictions are correct (theaccuracy) in each epoch, specify the additional keyword argumentmetrics=['accuracy']inmodel.compile(). - Fit the model using the
predictorsandtarget. Create a validation split of 30% (or0.3). This will be reported in each epoch.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Save the number of columns in predictors: n_cols
n_cols = predictors.shape[1]
input_shape = (n_cols,)
# Specify the model
model = Sequential()
model.add(Dense(100, activation='relu', input_shape = input_shape))
model.add(Dense(100, activation='relu'))
model.add(Dense(2, activation='softmax'))
# Compile the model
____
# Fit the model
hist = ____