Making predictions
The trained network from your previous coding exercise is now stored as model. New data to make predictions is stored in a NumPy array as pred_data. Use model to make predictions on your new data.
In this exercise, your predictions will be probabilities, which is the most common way for data scientists to communicate their predictions to colleagues.
Deze oefening maakt deel uit van de cursus
Introduction to Deep Learning in Python
Oefeninstructies
- Create your predictions using the model's
.predict()method onpred_data. - Use NumPy indexing to find the column corresponding to predicted probabilities of survival being True. This is the second column (index
1) ofpredictions. Store the result inpredicted_prob_trueand print it.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Specify, compile, and fit the model
model = Sequential()
model.add(Dense(32, activation='relu', input_shape = (n_cols,)))
model.add(Dense(2, activation='softmax'))
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(predictors, target)
# Calculate predictions: predictions
predictions = ____
# Calculate predicted probability of survival: predicted_prob_true
predicted_prob_true = ____
# Print predicted_prob_true
print(predicted_prob_true)