Selecting data from data range
Pulling data that meets specific conditions is one of the most powerful and commonly used operations with DataFrames. You can try it now with Alphabet stock data. Provided is the DataFrame alphabet and the datetimes start_date and end_date. The DataFrame's head looks like this:
| date | close | volume | open | high | low |
|---|---|---|---|---|---|
| 2019-08-02 | 1196.32 | 1745450 | 1203.00 | 1209.500 | 1190.00 |
| 2019-08-01 | 1211.78 | 1771271 | 1217.63 | 1236.298 | 1207.00 |
| 2019-07-31 | 1218.20 | 1997999 | 1224.87 | 1234.910 | 1208.18 |
| 2019-07-30 | 1228.00 | 1430775 | 1227.00 | 1236.910 | 1225.32 |
| 2019-07-29 | 1241.84 | 2069127 | 1242.50 | 1248.995 | 1230.20 |
Deze oefening maakt deel uit van de cursus
Intermediate Python for Finance
Oefeninstructies
- Create a mask of historical dates in the given date range.
- A mask can be used to make a selection of rows from a DataFrame.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Calculate the mask for one week
mask = (alphabet['date'] ____ start_date) & (alphabet['____'] <= end_date)
# Use the mask to get the data for one week
df = alphabet[____]
# Look at result
print(df)