Aan de slagGa gratis aan de slag

Automatic forecasting with exponential smoothing

The namesake function for finding errors, trend, and seasonality (ETS) provides a completely automatic way of producing forecasts for a wide range of time series.

You will now test it on two series, austa and hyndsight, that you have previously looked at in this chapter. Both have been pre-loaded into your workspace.

Deze oefening maakt deel uit van de cursus

Forecasting in R

Cursus bekijken

Oefeninstructies

  • Using ets(), fit an ETS model to austa and save this to fitaus.
  • Using the appropriate function, check the residuals from this model.
  • Plot forecasts from this model by using forecast() and autoplot() together.
  • Repeat these three steps for the hyndsight data and save this model to fiths.
  • Which model(s) fails the Ljung-Box test? Assign fitausfail and fithsfail to either TRUE (if the test fails) or FALSE (if the test passes).

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Fit ETS model to austa in fitaus
___ <- ___(___)

# Check residuals
___(___)

# Plot forecasts
___(___(___))

# Repeat for hyndsight data in fiths
fiths <- ___(___)
___(___)
___(___(___))

# Which model(s) fails test? (TRUE or FALSE)
fitausfail <- ___
fithsfail <- ___
Code bewerken en uitvoeren