Aan de slagGa gratis aan de slag

Mutual information features

The credit_df data frame contains a number of continuous features. When two continuous features are correlated, they contain the same information — something called mutual information. Highly correlated features are not just redundant. They can cause problems in modeling. For instance, in regression, highly correlated features (i.e., multicollinearity) can cause nonsensical results. To get a sense of mutual information, you will create a correlation plot to identify features with mutual information.

The tidyverse and corrr packages have been loaded for you.

Deze oefening maakt deel uit van de cursus

Dimensionality Reduction in R

Cursus bekijken

Oefeninstructies

  • Use correlate() and rplot() to create a correlation plot of the numeric features of credit_df.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create a correlation plot
___ %>% 
  select(where(is.numeric)) %>% 
  ___() %>% 
  shave() %>% 
  ___(print_cor = TRUE) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
Code bewerken en uitvoeren