Aan de slagGa gratis aan de slag

Create reduced random forest

Now, it's time to fit a reduced model using train_reduced and evaluate it using test_reduced. rf_spec is available for you to fit the reduced model. The full model had an F1 value of 0.948. As you fit and evaluate a reduced model, keep in mind there is always a trade-off between model simplicity and model performance. You have to make a judgment call about whether the benefits of the model reduction are worth any decrease in model performance, if there is any.

The tidyverse, tidymodels, and vip packages have been loaded for you.

Deze oefening maakt deel uit van de cursus

Dimensionality Reduction in R

Cursus bekijken

Oefeninstructies

  • Use the rf_spec to fit the reduced random forest model.
  • Bind the reduced model predictions to test_reduced.
  • Calculate the F1 metric for the reduced model.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Fit a reduced model
rf_reduced_fit <- ___ %>% 
  ___(___, ___ = ___)

# Create test set prediction data frame
predict_reduced_df <- ___ %>% 
  ___(predict = ___(___, ___))

# Calculate F1 performance
___(___, ___, ___)
Code bewerken en uitvoeren